• Assay Selection Tool

BellBrook Labs

  • Products
    • Transcreener® HTS Assays
      • Transcreener® ADP² Kinase Assay
      • Transcreener® ADO CD73 Assay
      • Transcreener® AMP²/GMP² Phosphodiesterase Assay
      • Transcreener® cGAMP cGAS Assay
      • Transcreener® EPIGEN SAH Methyltransferase Assay
      • Transcreener® GDP GTPase Assay Kits
      • Transcreener® UDP² Glycosyltransferase Assay
      • Transcreener® 2-5A OAS Assay
    • AptaFluor® HTS Assays
      • AptaFluor® SAH Methyltransferase Assay
    • HTS Assays by Target Family
      • Kinase Assay Kits
      • ATPase Assay Kits
      • Glycosyltransferase Assay Kits
      • GTPase Assay Kits
        • GAP Assay Kits
        • GEF Assay Kits
      • Ligase and Synthetase Assay Kits
      • Methyltransferase Assay Kits
      • Phosphodiesterase Assay Kits
    • HTS Assays by Target
      • Adenosine Kinase Assay Kits
      • AMPK Assay Kits
      • CD39 Assay Kits
      • CD73 Assay Kits
      • cGAS Assay Kits
      • DDX3 Assay Kits
      • ENPP1 Assay Kits
      • EZH2 Assay Kits
      • IKK-beta Assay Kits
      • IRAK4 Assay Kits
      • JAK1 Assay Kits
      • JAK3 Assay Kits
      • NSP13 Assay Kits
      • NUDT5 Assay Kits
      • OAS Assay Kits
      • PKR Assay Kits
      • TBK1 Assay Kits
    • Recombinant Enzymes
      • Human cGAS Enzyme
      • Mouse cGAS Enzyme
      • Human DDX3 Enzyme
      • Human OAS1 Enzyme
    • Assay Plates
    • Ordering Information
  • Services
    • Assay Development Services
    • Lead Discovery Services
    • CD38 Assay Services
    • GTPase Profiling Services
  • Innate Immunity
    • ADK Activity Assays
    • AMPK Activity Assays
    • cGAS Activity Assays
    • CD73 Activity Assays
    • CD38 Activity Assay Services
    • CD39 Activity Assays
    • DDX3 Activity Assays
    • ENPP1 Activity Assays
    • IKK-beta Activity Assays
    • IRAK4 Activity Assays
    • JAK1 Activity Assays
    • JAK3 Activity Assays
    • NSP13 Activity Assays
    • OAS1 Activity Assays
    • PKR Activity Assays
    • TBK1 Activity Assays
  • Resources
    • Technical Manuals
    • Transcreener® Assays – Instrument Compatibility
    • Application Notes
    • Posters and Presentations
    • Publications
    • Transcreener® FAQ’s
    • Guides
      • Residence Time Guide
      • Hit Prioritization Guide
      • Kinases in Innate Immunity
  • Company
    • President’s Message
    • International Distributors
    • Careers
    • Downloads
    • Contact Us
  • Blog
  • MY CART
    No products in cart.

BellBrook Labs Receives NIH Grant for the Discovery of cGAS Inhibitors to Treat Autoimmune Diseases

by Bellbrook Labs / Thursday, 11 July 2019 / Published in News
cGAS Inhibitors Grant

The National Institute Of Allergy And Infectious Disease recently awarded BellBrook Labs a $300,000 Small Business Innovative Research (SBIR) grant to develop novel inhibitors for the cyclic GAMP Synthase (cGAS). The grant will be used to accelerate the discovery of new treatments for autoimmune diseases by targeting the cGAS-STING pathway.

Madison, WI – July 2019 – BellBrook Labs has been awarded a $300,000 SBIR grant by The National Institute of Allergy and Infectious Diseases (NIAID) to develop novel inhibitors for cyclic GAMP Synthase (cGAS), a promising therapeutic target for autoimmune diseases, including lupus.

The enzyme cGAS acts as a trigger for activation of an innate immune response to cytoplasmic DNA that results from microbial infection or genotoxic events.  Once alerted, cGAS triggers a robust type I interferon response by producing the second messenger, cGAMP, which acts as an agonist for the stimulator of interferon genes (STING) receptor.

Aberrant activation of the cGAS-STING pathway by self-DNA has emerged as an underlying cause of terrible and often fatal monogenic autoimmune disorders such as Aicardi-Goutieres Syndrome (AGS).  Systemic lupus erythematosus (SLE) is another debilitating disorder where the pathway has shown to be a cause in a significant population of those affected by the disease. Using a small molecule inhibitor to block the cGAS enzyme from producing cGAMP could provide a more effective therapy for AGS and SLE with the potential to impact millions of people affected by debilitating autoimmune disorders.

Presently there are no drugs approved specifically for interferon-driven autoimmune disease. Current IFN-targeted therapies in clinical development are mostly biologics, such as antibodies against IFNα or the IFN receptor. Targeting cGAS may provide a more efficacious upstream solution, and a small molecule therapeutic would have decided advantages in terms of cost, dosing, and CNS exposure.

BellBrook has assembled a robust, highly efficient cGAS discovery platform and is well positioned to develop a first-in-class lead molecule. A decided advantage in terms of cGAS lead discovery is the Transcreener cGAS Assay, based on BellBrook’s flagship platform that has been proven by pharmaceutical companies globally for over 10 years. The biochemical assay has enhanced the company’s cGAS lead discovery program by enabling robust HTS and rapid SAR.

About BellBrook Labs:

BellBrook Labs has been accelerating drug discovery and biological research by providing innovative high throughput screening solutions since 2006. Their core assay technology, Transcreener, is a universal, homogenous biochemical assay method that enables screening of thousands of enzymes.  Leveraging their assay development expertise and deep experience from more than 10 years as a drug discovery service provider, the company has built a replenishable platform for developing lead drug molecules with unparalleled speed and efficiency.

Research reported in this publication was supported by the National Institute Of Allergy And Infectious Diseases of the National Institutes of Health under Award Number R43AI141281. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Tagged under: cGAS Inhibitors, Transcreener cGAMP cGAS Assay

What you can read next

Join us in Boston for DOT 2015
BellBrook Labs Awarded Federal Grant to Engineer a Better Model for Breast Cancer
New Posters from DOT 2017

Categories

  • Company
  • Emerging Targets
  • Epigenetics
  • HTS Assays
  • Innate Immunity
  • Neurodegenerative Diseases
  • News
  • Products
  • Resources
  • Success Stories
  • Uncategorized

Recent Posts

  • Info book on cancer and RAFK1's relation

    RAF1 & Immunity: A Future Model For Cancer Research?

    RAF1, also known as c-Raf, is a member of the R...
  • OAS1 The Cost of Host Defense

    OAS1: The Cost of Host Defense

    OAS1 (Oligoadenylate synthetase 1) is induced b...
  • Scientist Studying DDX41

    DDX41 as a Sensor, Suppressor, and Modulator

    DDX41 [DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 4...
  • Scientist Studying ALKPK1

    The Role of ALPK1 in Health and Disease

    ALPK1 (Alpha Kinase 1) is an atypical serine/th...
  • DHX36 RNA Helicase Unwinds G4 RNA Structures

    Resolving the Many Roles of DHX36

    While most researchers are familiar with canoni...

Archives

BellBrook Labs
5500 Nobel Drive, Suite 230
Madison, Wisconsin 53711 USA
(608) 443-2400

info@bellbrooklabs.com

 Copyright © 2022 BellBrook Labs | All Rights Reserved | Privacy Policy | Terms of Use | FCOI | Sitemap

TOP