SLAS 2023 – HTS Assays and Discovery Services
Monday, 23 January 2023
BellBrook Labs will exhibit and present posters at the upcoming SLAS 2023 conference in San Diego, California. At the SLAS conference, BellBrook will demonstrate applications for its suite of high throughput screening tools, including residence time determination, targeting kinases involved in the innate immune response, navigating hit prioritization after screening using biochemical assays, assay development,
No Comments
The Challenging Search for BTK Inhibitors
Tuesday, 27 December 2022
Bruton’s Tyrosine Kinase (BTK) is a 76kDa non-receptor Tec kinase that plays numerous diverse roles in B-cell development, immunity, autoimmunity, infection, and cancer. From stem to stern, it consists of an N-terminal plekstrin homology (PH) domain, a TEC homology (TH) domain, two SRC homology (SH2 and SH3) domains, and a C-terminal kinase domain. Unlike SRC,
- Published in Emerging Targets, HTS Assays, Innate Immunity
SARM1 Forefronts Research into Major Neurological Diseases
Monday, 19 December 2022
SARM1 [Sterile alpha & toll/interleukin receptor (TIR) motif-containing protein 1] consists of a N-terminal mitochondrial localization sequence (NLS), an autoinhibitory HEAT/armadillo (ARM) domain, two tandem sterile alpha motif domains (SAMs), and a C-terminal toll/interleukin receptor domain (TIR). It is a human toll like receptor (TLR) adaptor protein. TLR adaptors (MYD88, MAL, TRIF, & TRAM) usually
- Published in Emerging Targets, Innate Immunity, Neurodegenerative Diseases
SIRT2 Isoforms in Neurodegenerative Diseases & Cancer
Tuesday, 29 November 2022
Silent information regulator type 2 (Sirtuin 2 or SIRT2) is a highly evolutionarily conserved NAD+ dependent deacetylase. SIRT2 is the only Sirtuin that acts in the cytosol. It expresses in almost all tissues, but most abundantly in the central nervous system. While SIRT2 is classified as a type III histone deacetylase, it is also capable
- Published in Emerging Targets, HTS Assays, Innate Immunity, Neurodegenerative Diseases
Can WRN Helicase Inhibitors Treat MSI-H Cancers?
Tuesday, 04 October 2022
Over 100 years ago, Otto Werner first characterized a recessive autosomal disorder that caused premature, but largely typical, aging in adults, starting by the 3rd decade and resulting in death by the 6th decade via myocardial infarction or cancer. This disease, now known as Werner syndrome, is caused by specific alterations in the 162 KDa
- Published in Emerging Targets, HTS Assays, Innate Immunity
NSP16 Shows Promise for Anti-Viral Therapeutics
Tuesday, 20 September 2022
SARS-CoV-2 virus (Covid-19) possesses one of the largest genomes of any RNA virus. While it naturally encodes structural proteins among its 29 genes, it also produces non-structural proteins that are necessary to perpetuate infection. Non-structural protein 16 (NSP16) is one such protein.1 NSP16 Camouflages Viral mRNA NSP16 is an m7GpppA-specific, S-adenosyl-L-methionine-dependent 2’-O-methyltransferase (2’-O-MTase) that “caps”
- Published in Emerging Targets, HTS Assays, Innate Immunity
Looking Ahead: POLQ in the Future of Immuno-Oncology
Tuesday, 06 September 2022
The most well-known and widely studied mechanisms of double-stranded DNA break (DSB) repairs are homologous recombination (HR) and classical non-homologous end joining (C-NHEJ). HR is almost error-free due to formatting by the homologous sister chromosome. C-NHEJ relies on direct ligation of double-stranded DNA ends and only ever presents errors at the junction points. Recently, a
- Published in Emerging Targets, HTS Assays, Innate Immunity
Discovering the Emerging Importance of PARG in Immunity
Monday, 08 August 2022
Poly (ADP-ribose) glycohydrolase (PARG), along with poly (ADP-ribose) polymerase 1 (PARP1) are the principal elements of the DNA damage response (DDR). When single-strand breaks occur in cellular DNA, PARP1 mediates the poly ADP ribosylation of itself and target proteins, such as histones, promoting the decompaction of chromatin and recruiting relevant enzymes to initiate DNA repair.
- Published in Emerging Targets, HTS Assays, Innate Immunity
Helicases as Powerful Tools in Innate Immunity
Monday, 11 July 2022
Helicases are among the largest and most highly conserved families of enzymatic proteins in eukaryotic organisms. These proteins utilize NTP hydrolysis (usually ATP) to drive their recognition, remodeling, and response to target DNA or RNA.1 Nearly every aspect of nucleic acid metabolism is mediated by helicases. DNA helicases function in replication, repair, recombination, transcription, chromosome
- Published in Emerging Targets, HTS Assays, Innate Immunity
RAF1 & Immunity: A Future Model For Cancer Research?
Tuesday, 28 June 2022
RAF1, also known as c-Raf, is a member of the Raf family of ubiquitous serine/threonine kinases that regulate several critical biological processes, such as proliferation, differentiation, apoptosis, and metabolism. It functions as an activator of the mitogen-activated protein kinase (MAPK)/ ERK kinase (MEK) signaling pathway and a key effector of the small G protein Ras.
- Published in Emerging Targets, Innate Immunity