NSP16 Target for COVID-19 Therapeutics
SARS-CoV-2 virus (Covid-19) possesses one of the largest genomes of any RNA virus. While it naturally encodes structural proteins among its 29 genes, it also produces non-structural proteins that are necessary to perpetuate infection. Non-structural protein 16 (NSP16) is one such protein.1 NSP16 Camouflages Viral mRNA NSP16 is an m7GpppA-specific, S-adenosyl-L-methionine-dependent 2’-O-methyltransferase (2’-O-MTase) that “caps”
POLQ Involved in DNA Repair
The most well-known and widely studied mechanisms of double-stranded DNA break (DSB) repairs are homologous recombination (HR) and classical non-homologous end joining (C-NHEJ). HR is almost error-free due to formatting by the homologous sister chromosome. C-NHEJ relies on direct ligation of double-stranded DNA ends and only ever presents errors at the junction points. Recently, a
PARG in Human Immunity
Poly (ADP-ribose) glycohydrolase (PARG), along with poly (ADP-ribose) polymerase 1 (PARP1) are the principal elements of the DNA damage response (DDR). When single-strand breaks occur in cellular DNA, PARP1 mediates the poly ADP ribosylation of itself and target proteins, such as histones, promoting the decompaction of chromatin and recruiting relevant enzymes to initiate DNA repair.
Helicases Used in Innate Immunity
Helicases are among the largest and most highly conserved families of enzymatic proteins in eukaryotic organisms. These proteins utilize NTP hydrolysis (usually ATP) to drive their recognition, remodeling, and response to target DNA or RNA.1 Nearly every aspect of nucleic acid metabolism is mediated by helicases. DNA helicases function in replication, repair, recombination, transcription, chromosome
Info book on cancer and RAFK1's relation
RAF1, also known as c-Raf, is a member of the Raf family of ubiquitous serine/threonine kinases that regulate several critical biological processes, such as proliferation, differentiation, apoptosis, and metabolism. It functions as an activator of the mitogen-activated protein kinase (MAPK)/ ERK kinase (MEK) signaling pathway and a key effector of the small G protein Ras.
OAS1 The Cost of Host Defense
OAS1 (Oligoadenylate synthetase 1) is induced by type 1 interferon signaling. It recognizes 18 bp (or longer) double stranded RNA segments from invading viruses in the cytosol and catalyzes the production of 2’-5’ linked oligoadenylate (2-5A) from ATP. The 2-5A then, at the expense of yet more ATP, exclusively activates endoribonclease L (RNase L) by
Scientist Studying DDX41
DDX41 [DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 41] is a cytosolic helicase sensor for dsDNA, DNA/RNA complexes, and cyclic dinucleotides (CDNs). Its N-terminal domain is responsible for translocation from the cytoplasm to the nucleus. Its DEAD domain, with its signature aspartate-glutamate-alanine-aspartate motif, is important for ATP-powered DNA/CDN detection and signaling. The remaining C-terminal domain functions as a
Scientist Studying ALKPK1
ALPK1 (Alpha Kinase 1) is an atypical serine/threonine-protein kinase that specifically detects and binds the pathogen-associated pattern metabolites (PAMPs), ADP-beta-D-manno-heptose (Beta-ADP-Heptose) or D-glycero-beta-D-manno-heptose 1,7-bisphosphate (HBP). These metabolic precursors of lipopolysaccharide (LPS) biosynthesis are present in all Gram-negative and some Gram-positive bacteria.  This interaction stimulates ALPK1 to phosphorylate and activate TIFA, initiating an innate immune response
DHX36 RNA Helicase Unwinds G4 RNA Structures
While most researchers are familiar with canonical DNA structures, primarily B (but also even A or Z) DNA, an even more exotic form exerts a vast influence over nearly every aspect of nucleic acid function. In both DNA and RNA, tracts of guanine with at least four consecutive members can self-associate via Hoogsten base pairing

MAPK14 in Context

Researcher Studying MAPK14
MAPK14 (or p38 alpha or SAPK2a) is a proline-directed serine/threonine kinase activated by environmental stress or inflammatory signaling. While it is a well-conserved eukaryotic gene in the mitogen-activated protein kinase family, MAPK14 doesn’t typically respond to mitogens. All the same, MAPK14 is critically involved in cardiac development, sex determination, innate and adaptive immunity, and cellular