• Assay Selection Tool

BellBrook Labs

  • Products
    • Transcreener® HTS Assays
      • Transcreener® ADP² Kinase Assay
      • Transcreener® ADO CD73 Assay
      • Transcreener® AMP²/GMP² Phosphodiesterase Assay
      • Transcreener® cGAMP cGAS Assay
      • Transcreener® EPIGEN SAH Methyltransferase Assay
      • Transcreener® GDP GTPase Assay Kits
      • Transcreener® UDP² Glycosyltransferase Assay
      • Transcreener® 2-5A OAS Assay
    • AptaFluor® HTS Assays
      • AptaFluor® SAH Methyltransferase Assay
    • HTS Assays by Target Family
      • Kinase Assay Kits
      • ATPase Assay Kits
      • Glycosyltransferase Assay Kits
      • GTPase Assay Kits
        • GAP Assay Kits
        • GEF Assay Kits
      • Ligase and Synthetase Assay Kits
      • Methyltransferase Assay Kits
      • Phosphodiesterase Assay Kits
    • HTS Assays by Target
      • Adenosine Kinase Assay Kits
      • AMPK Assay Kits
      • CD39 Assay Kits
      • CD73 Assay Kits
      • cGAS Assay Kits
      • DDX3 Assay Kits
      • ENPP1 Assay Kits
      • EZH2 Assay Kits
      • IKK-beta Assay Kits
      • IRAK4 Assay Kits
      • JAK1 Assay Kits
      • JAK3 Assay Kits
      • NSP13 Assay Kits
      • NUDT5 Assay Kits
      • OAS Assay Kits
      • PKR Assay Kits
      • TBK1 Assay Kits
    • Recombinant Enzymes
      • Human cGAS Enzyme
      • Mouse cGAS Enzyme
      • Human DDX3 Enzyme
      • Human OAS1 Enzyme
    • Assay Plates
    • Ordering Information
  • Services
    • Assay Development Services
    • Lead Discovery Services
    • CD38 Assay Services
    • GTPase Profiling Services
  • Innate Immunity
    • ADK Activity Assays
    • AMPK Activity Assays
    • cGAS Activity Assays
    • CD73 Activity Assays
    • CD38 Activity Assay Services
    • CD39 Activity Assays
    • DDX3 Activity Assays
    • ENPP1 Activity Assays
    • IKK-beta Activity Assays
    • IRAK4 Activity Assays
    • JAK1 Activity Assays
    • JAK3 Activity Assays
    • NSP13 Activity Assays
    • OAS1 Activity Assays
    • PKR Activity Assays
    • TBK1 Activity Assays
  • Resources
    • Technical Manuals
    • Transcreener® Assays – Instrument Compatibility
    • Application Notes
    • Posters and Presentations
    • Publications
    • Transcreener® FAQ’s
    • Guides
      • Residence Time Guide
      • Hit Prioritization Guide
      • Kinases in Innate Immunity
  • Company
    • President’s Message
    • International Distributors
    • Careers
    • Downloads
    • Contact Us
  • Blog
  • MY CART
    No products in cart.

Visit With BellBrook Labs at Discovery On Target 2018

by Bellbrook Labs / Tuesday, 04 September 2018 / Published in News
Discovery on Target 2018

BellBrook Labs will exhibit and present posters at the upcoming Discovery on Target conference in Boston, MA. At the event BellBrook will demonstrate applications for its suite of high throughput screening tools, including residence time determination, methyltransferase activity measurement, studying ectonucleotidase enzymes, screening for kinase inhibitors, and more!

Discovery on Target 2018
Sheraton Boston Hotel
Boston, Massachusetts USA
September 26-28th

 


Exhibition

Visit Booth #405 to Get Your Hard Copy of Our New Guide:

Residence Time Guide

Learn How to Determine Drug-Target Residence Times with Biochemical Assays in this Free Guide Drug-target residence time has become a critical component in the discovery of new therapeutics. BellBrook Labs has recently published a guide to help describe the use of a proven “jump-dilution” method along with BellBrook’s Transcreener Assay platform to help streamline efforts.

Get the Guide!

 

 


Poster Presentations

 

Development of High Throughput Transcreener® Assays to Explore the Ectonucleotidase Enzyme Family

There has been an increasing focus in understanding cancer and tumor growth by studying the role of tumor immunosurveillance. Cancer cells employ several elegant ways to avoid the antitumor immune response. One well-studied mechanism is the generation of adenosine, an important signaling molecule involved in antitumor T cell response suppression. Adenosine is generated by the hydrolysis of extracellular ATP released by dying tumor cells. The conversion of ATP into adenosine is mediated by the family of ectonucleotidases. These membrane-bound enzymes hydrolyze nucleotides to nucleosides and are crucial for maintaining immune homeostasis. The subfamily includes ectonucleoside triphosphate diphosphohydrolase-1, also known as CD39, ENTPD1, or NTPDase1 that hydrolyzes ATP and ADP to AMP and CD73 or 5` Nucleotidase, that hydrolyze AMP to adenosine. These enzymes are emerging as extremely prominent immune-oncology targets for drug discovery. As the only HTS method capable of direct detection of nucleotides, the Transcreener platform is uniquely suited for measuring ectonucleotidase activity with the high sensitivity and low levels of interference required for a successful HTS campaign. The homogenous assays use a far-red fluorescence polarization (FP) or TR-FRET readout and they can be broadly applicable to ectonucleotidases. We developed a simple biochemical assay for measuring CD39 activity using the Transcreener AMP2 Assay. The assay provides robust detection of AMP production (Z’ > 0.6) with sub-nanomolar amounts of CD39.  Initial pilot screens have demonstrated robust assay performance (Z’ = 0.6 – 0.7) and IC50s determined for tool compounds of CD39 were consistent with published values. The Transcreener GDP2 Assay was coupled with an Adenosine Kinase enzyme to detect the production of adenosine using CD73. Adenosine Kinase converts the adenosine to GDP which can be detected using the GDP2 antibody. The availability of HTS-compatible enzyme assay methods will accelerate the discovery of inhibitors for CD39 and CD73 that play a role in tumor immunity and other diseases impacted by adenosine signaling.

The Transcreener® ADP² Assay:  A Universal Kinase Assay for HTS and Lead Optimization

Kinases are one of the most highly validated target families, yet only a small fraction of the kinome has been exploited therapeutically. ADP detection enables a universal assay method that has been broadly adopted for HTS efforts targeting kinases. The Transcreener ADP2 Kinase assay uses homogenous detection of ADP with a choice of FP, FI, or TR-FRET readouts. Transcreener is the only assay that directly detects ADP without any secondary signaling components, making it the simple yet flexible.  Other ADP detection methods rely on multiple coupled enzyme steps that are inherently prone to interference and require time-consuming counter-screens to triage false positives. Here we provide data demonstrating advantages of the Transcreener ADP2 Kinase Assay for HTS and examples of its use in important hit-to-lead applications, including dose-response curves (IC50) and inhibitor dissociation rate (koff) measurements.  The Transcreener ADP2 assay provides sensitive detection of initial velocity using ATP concentrations from 1 µM to 1 mM, which encompasses the full range of kinase Km values.  The assay is more sensitive than other ADP detection methods, especially at lower ATP concentrations, which reduces consumption of costly enzymes. Compatibility with 96, 384 and 1536 well formats and extensive validation on all major multimode readers provide flexibility with respect to equipment and throughput. Overnight reagent and signal stability at room temperature allows maximal flexibility for liquid handling and assay protocols – an important consideration in large volume screens – without compromising data quality. The assay also has distinct advantages in SAR and MOA studies. The high sensitivity allows accurate dose-response measurements for potent inhibitors; typically kinase concentrations less than 5 nM can be used, ensuring that inhibitor depletion does not impact IC50 values. Transcreener can also be used in kinetic mode, which simplifies assay development and provides flexibility for MOA studies; e.g., determining drug-target residence times.

Sensitive Detection of PRMT4 using Physiological SAM with the AptaFluor® Methyltransferase Assay

Histone methyltransferases (HMTs) produce many different methylated products, and assay methods that detect S-adenosylhomocysteine (SAH) therefore offer some advantages over methods that detect specific methylation events.  However, direct detection of SAH requires a reagent capable of discriminating between SAH and SAM, which differ by a single methyl group.  Moreover, HMTs are slow enzymes, and current non-radioactive SAH detection methods are not sufficiently sensitive to allow detection of many HMTs using physiological concentrations of SAM.  To overcome this technical gap, we leveraged a naturally occurring SAH-sensing RNA aptamer, or “riboswitch”, that binds SAH with nanomolar affinity and exquisite selectivity.  We engineered split-aptamer sensors that transduce binding of SAH into positive fluorescence polarization (FP) and time-resolved Förster resonance energy transfer (TR-FRET) signals.  The AptaFluor Methyltransferase Assay, allows robust detection of SAH (Z’ > 0.7) at concentrations below 10 nM, with signal stability of at least six hours in the presence of typical HMT assay components.  Here we compare the AptaFluor™ Methyltransferase Assay to two other HTS-compatible HMT assay methods based on a) immunodetection with an HTRF® readout and b) a coupled enzyme assay with a luminescent readout.  We used PRMT4 to compare the assays for detection of HMT activity, as this enzyme as this enzyme is representative of typical low Km HMTs (Km = 140 nM) and it has attracted interest as a therapeutic target.  All three assay methods allow robust detection of PRMT4 activity using 200 nM SAM in 2-hour reactions.  The greater sensitivity of the AptaFluor assay allowed practical detection using significantly less PRMT4 (EC50 = 2.8 nM) which can be advantageous for high volume screening and for dose-response measurement with high-affinity inhibitors.  Interestingly, the difference in sensitivity between AptaFluor and the other two assay methods was greater when saturating SAM (2 µM) was used.  By enabling direct SAH detection with the sensitivity required for physiological HMT reaction conditions, the AptaFluor Methyltransferase Assay should provide a valuable tool for epigenetic drug discovery.

Tagged under: AptaFluor SAH Methyltransferase Assay, Transcreener ADP Kinase Assay, Transcreener AMP/GMP Assay

What you can read next

Thriving and Striving: Living with Progeria and Searching for a Cure
Missed last week’s webinar? No worries! Full recording now available.
Posters and Presentations from DOT 2016

Categories

  • Company
  • Emerging Targets
  • Epigenetics
  • HTS Assays
  • Innate Immunity
  • Neurodegenerative Diseases
  • News
  • Products
  • Resources
  • Success Stories
  • Uncategorized

Recent Posts

  • Info book on cancer and RAFK1's relation

    RAF1 & Immunity: A Future Model For Cancer Research?

    RAF1, also known as c-Raf, is a member of the R...
  • OAS1 The Cost of Host Defense

    OAS1: The Cost of Host Defense

    OAS1 (Oligoadenylate synthetase 1) is induced b...
  • Scientist Studying DDX41

    DDX41 as a Sensor, Suppressor, and Modulator

    DDX41 [DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 4...
  • Scientist Studying ALKPK1

    The Role of ALPK1 in Health and Disease

    ALPK1 (Alpha Kinase 1) is an atypical serine/th...
  • DHX36 RNA Helicase Unwinds G4 RNA Structures

    Resolving the Many Roles of DHX36

    While most researchers are familiar with canoni...

Archives

BellBrook Labs
5500 Nobel Drive, Suite 230
Madison, Wisconsin 53711 USA
(608) 443-2400

info@bellbrooklabs.com

 Copyright © 2022 BellBrook Labs | All Rights Reserved | Privacy Policy | Terms of Use | FCOI | Sitemap

TOP