Optimized Settings to Validate the BMG LABTECH POLARstar/FLUOstar Omega Microplate Readers with the Transcreener® TR-FRET Assays.

Meera Kumar1, Mark Gröne2, Franka Ganske2 and EJ Dell2
1BellBrook Labs, Madison, WI, USA; 2BMG Labtech, Durham, NC, USA.

This Application Note describes the optimal instrument parameters used to validate the BMG LABTECH POLARstar/FLUOstar Omega microplate readers with the following assays:

Transcreener® ADP2 TR-FRET (3011)

Introduction

Transcreener® HTS is a universal, high throughput biochemical assay platform based on the detection of nucleotides, which are formed by thousands of cellular enzymes - many of which catalyze the covalent regulatory reactions that are central to cell signaling and are of great value as targets in drug discovery.

The Transcreener® TR-FRET Assays are a single step, competitive immunoassay for direct detection of nucleotides with a far red time-resolved Förster-resonance-energy-transfer (TR-FRET) readout. The reagents for all of the assays are a far red Tracer bound to a highly-specific monoclonal antibody-Terbium conjugate. Excitation of the Terbium complex in the UV range (ca. 330 nm) results in energy transfer to the Tracer and emission at a higher wavelength (665 nm) after a time delay. Nucleotide diphosphate or monophosphate produced by the target enzyme displaces the tracer from the antibody, leading to a decrease in TR-FRET (Figure 1). The use of a red tracer minimizes interference from fluorescent compounds and light scattering. The Transcreener® TR-FRET Assays are designed specifically for HTS with a single addition, mix-and-read format.

Validation Criteria

A critical factor in realizing the advantages of the Transcreener® HTS assays is the correct setup of the microplate reader used for data readout. Proper selection of filters, dichroics, gain and flashes can impact the instrument’s sensitivity for any given assay. The key instrument parameters for Transcreener® HTS assay performance were identified by running a 10 µM ATP/ADP standard curve (24 replicates), as standard curves of this type mimic enzyme reactions. Starting with 10 µM ATP, ADP was added in increasing amounts and ATP is decreased proportionately, maintaining a total adenine nucleotide concentration of 10 µM. The flash numbers were varied to determine the requirements for a $Z' > 0.5$. In order to validate an instrument for use with the Transcreener® TR-FRET Assays, a $Z' > 0.7$ at 10% conversion of 10 µM ATP was required.

PolarStar/FluoStar Omega Information

- Equipped with Tandem Technology that uses ultrasensitive filters and high speed UV/Vis spectrometers.
- Equipped to read 6- to 1536-well plates.
- Assay flexibility achieved by reagent injectors, precise temperature control, multi-mode shaking, and top/bottom reading.
- POLARstar Omega is capable of measuring FP, FI and TR-FRET, while FLUOstar Omega is capable of FI and TR-FRET readouts.

Instrument Settings

<table>
<thead>
<tr>
<th>Instrument Wavelength Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRF Optical Head</td>
</tr>
<tr>
<td>EXC: TR-Ex</td>
</tr>
<tr>
<td>EMS 1: 665 nm/EMS 2: 620 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimized POLARstar/FLUOstar Omega Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration Start and Time</td>
</tr>
<tr>
<td>60 µs and 400 µs</td>
</tr>
<tr>
<td>Measuring Height</td>
</tr>
<tr>
<td>12 mm</td>
</tr>
<tr>
<td>Positioning Delay</td>
</tr>
<tr>
<td>0.2 sec</td>
</tr>
<tr>
<td>Flash Number</td>
</tr>
<tr>
<td>variable</td>
</tr>
</tbody>
</table>

Table 1. Recommended POLARstar/FLUOstar Omega Instrument Settings
Instrument Setup

The TRF Optic Head was installed prior to instrument evaluation. Once that component has been installed, proceed with the following steps to optimize the instrument:

1. Select the “TRF Measurement” tab from the Measurement screen.
2. Select “Multichromatics Measurement” and select the excitation and emission filter wavelengths - TR-Ex (EXC), 665 nm (EMS1) and TR-Ex (EXC), 620 nm (EMS2).
3. Manually adjust the Focus Height to 12 mm.
4. Manually set the “Gain” to “2000” (do not perform any gain adjustments).

The same measurement settings can be used for subsequent plates as long as the volumes, tracer and concentrations remain the same. A snapshot of the Time Resolved Fluorescence screen is shown in Figure 2.

Sample TR-FRET Standard Curve

As the ratio of ADP:ATP increases, the proportion of bound tracer vs. free tracer decreases, resulting in an overall decrease in FRET. Assay plates containing the 15-point standard curve were read on the POLARstar/FLUOstar Omega Microplate Reader.

Materials

- **ATP/ADP Mixture** - 4 mM MgCl₂, 2 mM EGTA, 50 mM HEPES, pH 7.5, 1% DMSO, 0.01% Brij-35, and ATP/ADP (combined to a constant adenine concentration of 10 µM).

- **ADP Detection Mixture** - 1X Stop & Detect Buffer C, 8 nM ADP² Antibody-Tb, and 27 nM ADP HiLyte647 Tracer.

- **High FRET Mixture** - 8 nM ADP² Antibody-Tb, 27 nM ADP HiLyte647 Tracer, 10 µM ATP in 1X Stop & Detect Buffer C.

- **Low FRET Mixture** - 8 nM ADP² Antibody-Tb, 27 nM ADP HiLyte647 Tracer, 10 µM ADP in 1X Stop & Detect Buffer C.

For a detailed procedure on how to prepare a standard curve, please refer to the appropriate Transcreener® Technical Manual (http://www.bellbrooklabs.com/transcreener_hts_assays.html).

Method

1. Dispense 10 µL of each ATP/ADP combination across an entire row of a 384-well plate.
2. Add 10 µL of ADP Detection Mix to those rows.
3. Dispense 10 µL of the 10 µM ATP/0 µM ADP combination into row P.
4. Dispense 10 µL of the High FRET mixture into wells P1-P12.
5. Dispense 10 µL of the Low FRET mixture into wells P13-P24.

![Sample TR-FRET Standard Curve Image](image_url)

Conclusions

This application note demonstrates the validation of the BMG LABTECH POLARstar/FLUOstar Omega instruments for use with the Transcreener® TR-FRET Assays. By utilizing the optimized instrument settings suggested within this Application Note, Z' values > 0.7 at 10% conversion are achievable.

For technical information, please contact:

Meera Kumar, Applications Scientist
Tel: 608.443.2400
Toll-Free: 866.313.7881
Email: meera.kumar@bellbrooklabs.com

Phone Orders:
608.443.2400
866.313.7881

Fax Orders:
608.441.2967

Email Orders:
info@bellbrooklabs.com

Please visit www.bellbrooklabs.com or contact BellBrook Labs for pricing for the Transcreener® HTS Assays. Custom quotes are available for bulk orders.

Related Products

- Transcreener® ADP\(^2\) FP Assay 3010-1K
- Transcreener® ADP\(^2\) FI Assay 3013-1K
- Transcreener® ADP\(^2\) TR-FRET Red Assay 3011-1K
- Transcreener® AMP/GMP FP Assay 3006-1K
- Transcreener® UDP FP Assay 3007-1K
- Transcreener® GDP FP Assay 3009-1K
- Transcreener® GDP FI Assay 3014-1K

Technical Information

For technical information, please contact:

Meera Kumar, Applications Scientist
Tel: 608.443.2400
Toll-Free: 866.313.7881
Email: meera.kumar@bellbrooklabs.com

Transcreener® HTS Assay Platform is a patented technology of BellBrook Labs.
Transcreener® is a registered trademark of BellBrook Labs.
LanthaScreen® Terbium is a registered trademark of Invitrogen.
HiLyte Fluor™ is a trademark of Rnaspec.